Skip to main content

POLIS

  • Home
  • About
    • Annual report
  • People
    • Director
    • Management committee
    • Staff
    • Adjuncts
    • Visitors
    • Current HDR students
    • Scientific Advisory Board
  • Events
    • CSRM Seminar series
    • Citizen Social series
    • Conferences & workshops
      • Past conferences & workshops
  • News
    • In the media
  • ASPA
    • 2025 Australian Social Policy HDR Conference
    • Australian Journal of Social issues
    • Australian Social Policy Conference
    • Contact us
  • WAPOR
  • Education & training
    • POLIS Courses on offer
    • Undergraduate programs
    • Graduate programs
    • Honours
    • Higher degree by research
    • Executive courses
  • Programs & research
    • Australian Data Archive
    • Criminology
    • Centre for Gambling Research
      • Current projects
      • Past projects & outcomes
      • Media & Resources
    • Research Methods
    • PolicyMod
    • Social Policy
    • Surveys
      • ANUPoll
        • Methodologya
        • Contact ANUpoll
    • Evaluations
    • Transnational Research Institute on Corruption
      • TRIC Award for Anti-Corruption Research
      • The Corruption Agenda
      • Anti-corruption conferences and forums
      • Research
      • Corruption Studies
      • Resources
      • Contact us
    • Research projects
      • Manning cost-benefit tool
      • Routledge Wellbeing Handbook
      • SOAR
      • QRN
      • NT Gambling project
      • FaCtS Study
      • PELab
      • Evaluation of Narragunnawali
      • OxCGRT Australian Subnational dataset
      • Post Separation Parenting Apps
  • Publications
    • Working papers
    • Methods research papers
    • COVID-19 publications
    • Other publications
  • Contact us

Related Sites

  • ANU College of Arts & Social Sciences
  • Research School of Social Sciences
  • Australian National Internships Program
  • ANU Jobs

Administrator

Breadcrumb

HomePublicationsA Hybrid Wrapper-filter Approach For Malware Detection
A hybrid wrapper-filter approach for malware detection
Author/editor: Mamoun, A, Shamsu, lH, Jemal, A et al.
Year published: 2014
Issue no.: 11
Page no.: 2878
Volume no.: 9

Abstract

This paper presents an efficient and novel approach for malware detection. The proposed approach uses a hybrid wrapper-filter model for malware feature selection, which combines Maximum Relevance (MR) filter heuristics and Artificial Neural Net Input Gain Measurement Approximation (ANNIGMA) wrapper heuristic for sub-set selection by capitalizing on each classifier’s strengths. The novelty of the proposed approach is that it injects the intrinsic characteristics of data obtained by the filter into the wrapper stage and combines this with wrapper’s heuristic score. This in turn can reduce the search space and guide the search for the most significant malware features that assist in detection. Extensive cross-validated experimental investigations on actual malware datasets were conducted to evaluate the performance of the proposed model. The model was compared with several existing models including independent wrapper and filter approaches. The results of the model’s performance on both obfuscated malware as well as benign datasets showed that the proposed hybrid MRANNIGMA model out-performed the independent filter and wrapper approaches by achieving the highest accuracy of 97%. Furthermore, this hybrid model improved execution time by using a more compact set of operation code features, and also reduced the rate of false positives.

Index Terms—Malware, opcodes, feature selection, wrapperfilter, neural network, multi-layer perceptron networks

DOI or Web link

https://www.researchgate.net/profile/Jemal_Abawajy/publication/280901982_A_Hybrid_Wrapper-Filter_Approach_for_Malware_Detection/links/57a8619b08aed76703f4afba/A-Hybrid-Wrapper-Filter-Approach-for-Malware-Detection.pdf